

600W, AC/DC全国产砖类模块电源

产品特性:

- ◆元器件100%全国产
- ◆ 宽输入电压范围:85-290Vac/120-410Vpc
- ◆ 效率高达93.5%,功率因数高达0.99
- ◆ 国际标准半砖管脚尺寸
- ◆ 超小体积, 高功率密度
- ◆ 过温保护,输入欠压保护,输出过压/过流/短路保护
- ◆ 符合UL/IEC62368认证标准
- ◆ 五年质保期

型表						
	输入电压(Vac)		输出		效率(%,Typ.)	最大容性负载
产品型号	标称值 (范围值)	最大值②	输出电压 (Vpc)	输出电流(A) (Max.)	@满载	(µF)
CFAH600S12TGC			12	50	93.5	
CFAH600S24TGC			24	25	93.5	
CFAH600S28TGC			28	21.5	93.5	
CFAH600S48TGC			48	12.5	93.5	
CFAH350S12TGC			12	29.2	93	10000
CFAH350S24TGC	85-290	315	24	14.6	93	
CFAH350S28TGC			28	12.5	93	
CFAH350S48TGC			48	7.3	93	
CFAH720S12TGC			12	60	93.5	
CFAH800S24TGC			24	33.3	93.5	
CFAH800S28TGC			28	28.6	93.5	

工作特性:

输入电压范围:85~290Vac

输出电压/电流:12Vpc/50A,

典型PF值0.99, 典型效率93.5%,

工作温度:-40℃~100℃,

支持输出电压可调,远端补偿,串口通讯,遥

控开关机和支持10台并机及主动均流功能等:

保护特性:

输入过压保护、

输入欠压保护、

输出过流/短路保护、

输出过压保护、

过温保护。

应用领域:

工业控制供电、

5G微基站供电、

机械手臂及机器人供电、

数据网络及服务器供电电源、

分布式能源微系统、

车载系统, 机载系统, 舰船系统等供电场景。

其他特性:

尺寸:63.0mm×61.0mm×12.7mm,

MTBF大于1,000,000小时,铝基板散热,

产品设计符合CB认证,产品设计符合RoHS5,

所有材料满足UL94V-0阻燃等级,

产品设计符合UL/IEC/EN60950-1标准:

极限测试

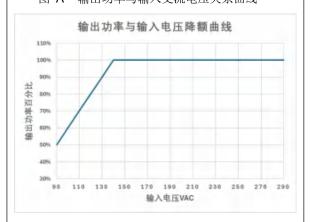
试验项目	试验条件
高低温存储试验	低温-55℃;基板高温100℃,各24小时。
高低温工作试验	低温-40℃, 基板高温100℃; 满载(铝基板温度大于80℃降额使用),各24小时;
高温高湿试验	基板温度100℃,湿度95%;满载(铝基板温度大于80℃降额使用)工作24小时。
温度冲击试验	基板高温100℃, 低温-40℃; 高温2小时, 低温2小时, 温度变化率 5℃/min; 满载; 3个循环。

性能参数

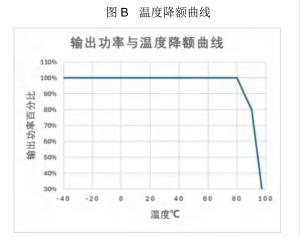
测试条件: T=25℃, Vin=220Vac, 额定负载, 基板散热。

极限值					
参数	最小值	典型值	最大值	单位	备注
输入电压(连续)	_	_	315	Vac	可以不工作,但不能损坏
工作温度	-40	_	100	$^{\circ}$	基板温度
存储温度	-55	_	100	$^{\circ}$	环境温度
输入特性					
输入电压范围	85	220	290	Vac	交流
交流输入频率	47	50/60	63	Hz	
功率因素典型值	0.98	0.99	0.999		
最大输入电流	_		8	Α	各输入输出条件下测试的输 入电流有效值;依据功率降 额标准测试。
输入冲击电流			30	Α	全电压范围, 冷起机或者热起机都满足; 测试时在模块输入引脚处进行测试。
输入防反接功能	交流车	俞入时,输	入L及N线之	间反接后	,电源可以正常工作。
接地方式			基板	应用时接	PE
输出特性					
输出电压典型值	_	12	_	VDC	
输出电压可调范围	- 10	_	+10	%	
输出电流	0	_	50	Α	
输出功率	_	_	600	W	输出功率与输入电压,温度

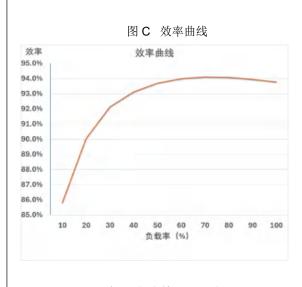
						关系参考降额曲线图,输入
						全范围不降额需要定制。
效率典型值		91	93.5	95	%	
电压	精度	-2	_	+2	%	
电压调	『整率	-0.5	_	+0.5	%	
负载调	『整率	-0.5	_	+0.5	%	
峰峰值约	双波电压	_	60	100	mV	20MHz带宽限制,并接10uF 电解电容和0.1uF电容测试
外置输出负载电容		470×8	_	10000	uF	输出电容推荐使用低ESR的 固态电容;(电容额定电压 为16V);使用大容量容性负载 测试时,需采用CR模式进行 实验。
外置母线负载电容		330	_	330×2	uF	升压母线电容推荐使用长寿 命的铝电解电容(电容额定 电压为450V);根据功率选 择合适的参数,功率小可以 适当降低容量。
温度	系数	-0.05	_	+0.05	%/°C	-40℃-100℃
关机保:	关机保持时间		_	_	ms	关机开始至输出电压跌落至 规格值90%的时间,该参数 与外接电容容量大小有关。
负载均	河流度	-5	_	+5	%	30-100%负载范围内
输出共	地方式		电源输	出地与PE隔	离,系统	侧可根据外围设定
并机下同步	起机功能				有	
动态特性		l.				
负载动态	过冲幅度	-5	<u> </u>	5	%	25%-50%-25%,50%-75%-
响应	 恢复时间	_	_	200	us	50%,di/dt=0.1A/μs
TT 14	爬升时间	_	_	50	ms	开机后,输出电压从整定值 的10%爬升到90%的时间。
开机 特性	开机延迟 时间	_	_	2	s	从开机加电,到输出电压上 升到整定值的90%所用的时间。
保护特殊						
输入欠压	保护点	_	_	80	Vac	测试欠压保护时, 应在 10A
	i	ļ	1	-	 	_
保护	恢复点	_	_	85	Vac	以下负载进行测试。

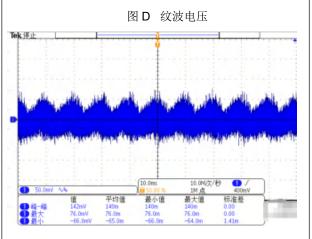


保护	恢复点	285	_	295	Vac			
输出短距	输出短路保护		保护后无输出,故障解除后自动恢复正常					
输出过流保护		105%	_	150%	Α	自恢复		
输出过压保护		_	_	130%	VDC			
过温1	保护	101	_	108	$^{\circ}$	铝基板中心点温度		
恢复	温度	90	_	_	$^{\circ}$	1		
绝缘特性								
输入对输出	隔离电压	_	2000	_	Vac	耐压测试电压为50Hz的交		
输入对铝基	扳隔离电压	_	1500	_	Vac	流有效值,时间为 60 秒, 绝缘不击穿或飞弧;耐压漏		
输出对铝基构	扳隔离电压	_	500	_	VDC	电流<3.5mA		
绝缘口	电阻	_	100	_	ΜΩ	500V兆欧表		
环境特性								
工作	湿度	≤95%RH(温度40±2℃)						
工作	环境	周围无严重尘土,爆炸危险介质,腐蚀金属和破坏绝缘的有害气体,导电微粒和严重的霉菌,无强电磁干扰。				属和破坏绝缘的有害气体,		
海拔	海拔高度		≤5000m					



功率特性曲线




备注: 当输入交流电压低于145Vac时要求负载降额使用;(如需兼容低压段,可单独定制)

备注: 当铝基板温度大于80℃时要求负载降额使用(在 左图曲线基础上); 更高温度范围需单独定制。

备注:额定输出下测试

备注:额定输入输出下测试

图1 功率特性曲线图

封装尺寸及管脚定义图:

尺寸:63mm×61mm×12.7mm

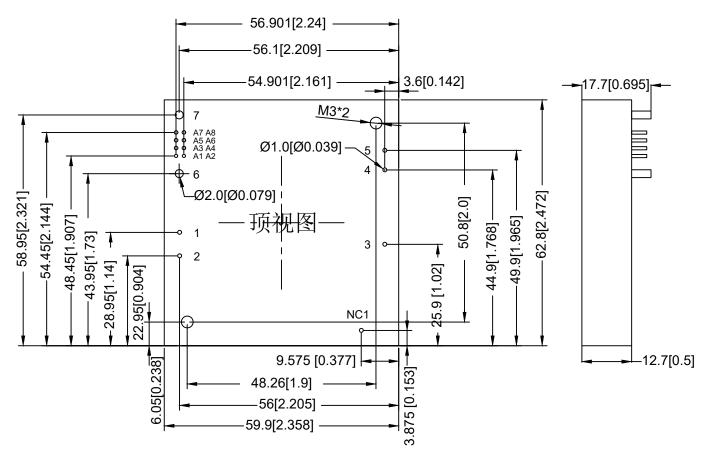


图 2 模块结构图

螺柱为?3.1mm通孔(或M3内螺纹);除已标注尺寸公差外,其它尺寸公差按GB/T1804-2000;M级标准执行;模块的安装高度为12.7±0.5mm,引脚伸出长度为4.6±0.4mm,输出端8 Pin信号端子为方针0.5×0.5mm,推荐使用0.9mm直径孔。

引脚定义

接口应用见图8

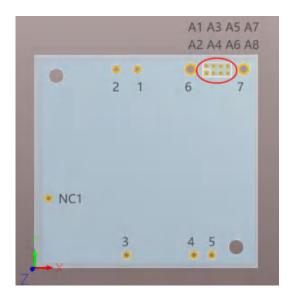


图 3 模块引脚标号图

引脚定义及说明

接口	引脚	名称	功能	备注			
	1	AC1	交流输入端子(L)	高电压输入,要求焊接牢固。			
	2	AC2	交流输入端子(N)				
	3	BC+	升压电压端子(正)	必须外接R和C,要求焊接牢固。			
	4	BC-	升压电压端子(负)				
功率 引脚			限制输入浪涌电流 的外接电阻用端子	参考模块外围接线图及相应的参数配置。			
	6	+Vo	输出端子(正)	尽量靠近输出端口放置电容;输出大电流时应接			
	7	-Vo	输出端子(负)	较宽的铜箔,焊接牢固			
	NC1 NC1 保护端		保护端子	必须使用该引脚,需要使用两个SIC二极管,具体应用参考图8所示			
	A1	ON/OFF	ON/OFF遥控信号	可选配模式;默认为直接开机			
	A2	COM	信号地	与内部信号地连接,不可与功率地短接。			
	А3	TX	串口发送端口	通过串口通信协议实现在线读取电压电流等信息;无需此功能时,可悬空;该引脚为复用引脚,可定制选配为Power OK信号			
信号引脚	A4	AUX	辅助源输出	外部信号用辅助电源,参考地COM脚,输出电压 范围11V-13V,最大输出电流10mA,内部无限流 保护,使用时需注意;无需此功能时,可悬空。			
31/044	A5	85 TRIM 输出电压调节存号 -		通过外接电阻或外加电压,实现调压功能; 无需此功能时,该引脚可悬空,不外接信号。			
	A6 CB		均流信号	多模块并机时使用。 无需此功能时,该引脚可悬空,不外接信号。			
	A7	+S	远端补偿信号	S+接VO+, 尽量靠近, 不可悬空。			
	A8	A8 SYON 同步起机信号		多模块并机时使用。 无需此功能时,该引脚可悬空,不外接信号。			

注:BC+, R端子为输入侧电压, 带有高压400Vpc, 请勿触碰;

特性描述

遥控开/关(ON/OFF)

ON/OFF信号, 起机逻辑为高电平有效; 将ON/OFF与AUX短接, 模块检测到ON/OFF为高电平, 电源开始起机; 若使用远程控制功能, 需将下图4中的开关换成光耦即可; 接线图如下图所示:

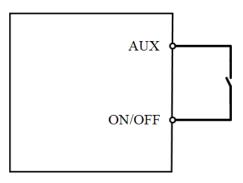


图 4 ON/OFF 接线图

输出电压调节(TRIM端子)

模块通过外接电阻(或接入稳定的电压值),使输出电压在-20%Vo到+10%Vo连续可调;配置参数参考下表,电容C1可以固定为0.1uF/50V/X7R;如果不需要调节电压功能,此脚可悬空;除下图所示的调压接线外,TRIM调节功能也可通过模拟电压(D/A功能)接入TRIM点进行模块输出调压,特别要注意的是加大端口处的滤波(0.1uF/50V/X7R),不可有干扰噪声等引入。

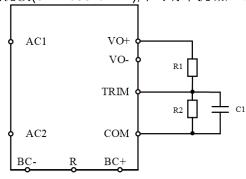
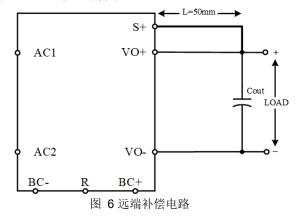


图 5 TRIM调压接线图


调节输出电压时各电阻值(或电压值)参考如下:

位号	11V	12V	13V	备注
R1	51K	51K	51K	输出12V时建
R2	4.5K	5K	5.6K	议取消TRIM 电路。
D/A功能	2.3V	2.5V	2.7V	

远端补偿功能(+S端子)

该模块电源具有远端补偿功能,使用时+S必须通过外部走线连接到Vo+上;若使用远端补偿功能,则补偿线长度尽量小于50mm;该引脚不可悬空。

均流信号(CB端子)

模块具有并联应用功能将各电源模块的CB端子连接(走线尽量短),可实现模块间的输出电流均流(支持10台以上并机);将各电源模块的SYON端子连接,可实现模块间的同步起机功能;如果不需要并机功能,可将引脚悬空;接线如下图所示:

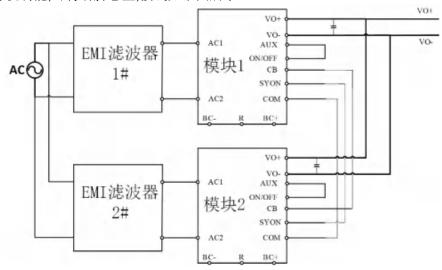


图 7 电源并联使用连接方式

外围电路设计要求:

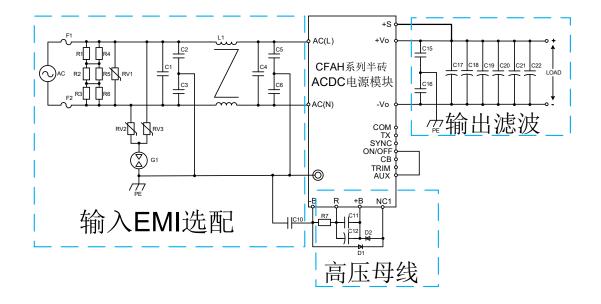


图 8 单个模块外围电路接线图

各参数配置如下:

F1,F2	AC 250V 10A,慢断型
R1,R2,R3,R4,R5,R6	0.25W,300kΩ,贴片封装:1206
RV1	压敏电阻620V,385V,12kA
	(根据系统浪涌等级要求,选择性增加或删减)
RV2,RV3	压敏电阻750V,460V,12 kA
	(根据系统浪涌等级要求,选择性增加或删减)
G1	10 kA,1.5 kV气体放电管(根据系统浪涌等级要求,
	选择性增加或删减)
L1	依据EMC实际要求自行选择(建议大于2.5mH)
C1,C4	依据EMC实际要求自行选择(X电容)
C2,C3,C5,C6,C10,C15,C16	依据EMC实际要求自行选择(Y电容)
C12	>330uF/450V长寿命电解电容(-40~+105℃)
C11	630V0.1uF薄膜电容(靠近引脚摆放),
	或可使用3个贴片高压电容630V10nF并联
R7	51ohm,7W水泥功率电阻
C17,C18,C19,C20,C21,C22	1000uF/16V固态电容(-55~+125℃)
D1,D2	SIC二极管, 600V6A, TO-252封装

装配要求

1:电源的铝基板应该安装在散热器上,安装方向可以自由选择,为防止电源模块周围的热积聚,在使用时需要充分考虑空气的对流;强制冷却或自然冷却时,需要考虑周围元器件的布局已及PCB的安装方向,以确保散热器的空气对流;为减小热阻,在安装前需在铝基板或被安装面上涂上一层较均匀薄薄的导热硅脂(散热膏)或导热凝胶,以满足散热要求;

2:所有插针插入PCB后,需保证插针出脚长在0.8mm以上。

模块焊接要求

该模块适用于标准的波峰焊接技术及手工焊接方式。

- 1: 当波峰焊接时, 模块的引脚必须在130℃预热20秒~30秒, 波峰焊在260℃少于10秒。
- 2: 手工焊接时, 小信号的8 PIN针要注意烙铁设置温度350℃左右, 焊接时间不能过长, 长时间的高温焊接能导致模块内部的针脚脱焊或者短路。

使用注意事项:

- 1) 电源使用时应避免撞击,以免所用模块破碎损坏;
- 2) 电源安装时,应锁紧电源的螺丝,以保证电源的接地良好。
- 3) 产品内部存在危险电压,不是专业人员不建议带电安装以及拆卸,以及带电触摸电源内部器件; 关机后电源BC+以及R之间的外接电容上可能还残留高压约一分钟,请留意。
- 4) 模块要求低温-20℃或者更低温度使用时,建议外接BUS电解电容及输出滤波电容温度等级达到-40℃或者更低温度。
- 5) 由于模块外围所接的电容等元器件在低温下参数可能变差,可使用低温特性好的器件或适当进行预热,以提高输出指标的精度。
- 6) 模块铝基板温度超过85℃时,用户要严格按功率降额曲线图配置负载,以免模块内部元件温升过高而损坏,不可恢复:特殊温度降额曲线需要单独定制。
- 7) 多模块并联使用时,将各模块的CB信号端子尽量短的连接,需要注意走线远离干扰源,接线方法参考并机CB引脚介绍及接线图所示。
- 8) 默认安装方式为M3螺纹孔。
- 9) 该版权及产品最终解释权归北京华阳长丰科技有限公司所有

北京华阳长丰科技有限公司 新长沣 (河北)装备实业有限责任公司

生产基地:河北省涿州市开发区火炬南街25号

电话:010-68817997

手机:15600309099

E-mail:sales@chewins.net