DC/DC CONVERTER

FEATURES:

500W, wide voltage input, isolated and stabilized single output

- Wide input voltage range (2:1)
- ◆ Efficiency up to 94%
- ♦ Isolation voltage 2250Vpc
- Input undervoltage protection, output short circuit, overcurrent, overvoltage protection, over temperature protection
- Equipped with parallel current sharing function
- Working temperature range of aluminum substrate: -40 °C to +100 °C
- International standard 1/2 brick
- Three year warranty period

Mode1	Selection Table								
		ON/OFF	INPUT VOLTAGE(VDC)		Out	Output		Maximum	
	Model	logic ^①	Nominal value (range value)	Maximum value [®]	Voltage (VDC)	Current (A) Max./Min.	efficiency (%) Min./Typ.		capacitive load (µF)
	CFDH500-24S12R3-N	N	24 (18-36) 40	40	12	42/0	91/93	12000	470
	CFDH500-24S15R3-N				15	34/0	92/94	10000	470
	CFDH500-24S24R3-N				24	21/0	91/93	6000	470
	CFDH500-24S28R3-N				28	18/0	92/94	5000	470

Note:

③ To ensure the stability of the output voltage, a minimum capacitive load must be connected to the output side of the product.

Input characteristics						
Project	Working conditions		Min.	Тур.	Max.	Unit
) 24Vpc input	12V, 24V output	-	22.58/0.34	23.08/0.38	
Input current (full load/no load)		15V, 28V output	-	22.61/0.34	23.1/0.38	Α
reflected ripple current	24Vpc input	24Vpc input		500		
Impulse Voltage(1sec.max.)			-0.7		50	
starting voltage					18	VDC
Under voltage protect			15.5			
Start Time	Nominal input voltage and constant resistance load				100	ms
Input filter type			capacitor filter			
Hot Plug			Not Supported			
	Module shutdown		ON/OFF suspended or connected to TTL high level (3.5-12VDC)			
Remote control foot (ON/OFF)	Module enabled	ON/OFF to GND or low level (0-1.2Vpc)				
	Input current during shutdown		25	40	mA	
Note: The voltage of the ON/OFF control pin is relative to the input pin - Vin.						

 $[\]ensuremath{\textcircled{1}}$ "P" represents positive logic, "N" represents negative logic;

② The input voltage cannot exceed this value, otherwise it may cause permanent and irreparable damage;

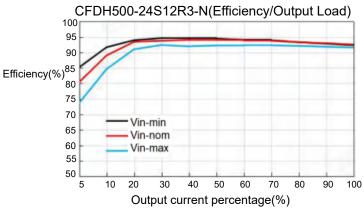
Output characteristic	;					
Project	Working conditions		Min.	Тур.	Max.	Unit
voltage accuracy	0% -100% load	0% -100% load		±1	±3	
Linear regulation rate	Full load, input voltage from		±0.2	±0.5	%Vo	
Load regulation rate	5% -100% load			±0.25	±0.75	
Transient Recovery Time	050/ 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			300	500	μs
Transient response deviation	25% load step change, 2A/us			±3	±5	%Vo
Temperature drift coefficient	emperature drift coefficient Nominal full load				±0.03	%/℃
Ripple/noise [©]	24VDC nominal input voltage	12V, 15V output			150	.,
	20MHz bandwidth, 5% -100%load	24V, 28V output			220	mVp-p
Parallel current sharing accuracy [®]	24Vpc nominal input voltage	, 100% load, 2pcs in parallel		±8	±10	%lo
Adjustable output voltage(Trim)			90		110	
Remote compensation(Sense)					110	%Vo
Overvoltage protection	Input Voltage		110	115	130	
Overcurrent protection			110	115	130	%lo
Short circuit protection			Hiccup style, sustainable, self-healing			
Over Temperature Protection				110	120	°C
Note:	1			1	1	

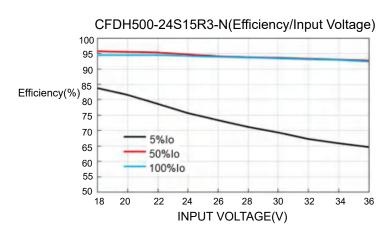
① 0% -5% of the load ripple/noise is less than or equal to 5% Vo. The testing method for ripple and noise adopts the reliable measurement method. The recommended peripheral measurement method is 1uF ceramic capacitor+10uF tantalum capacitor+"minimum capacitive load".

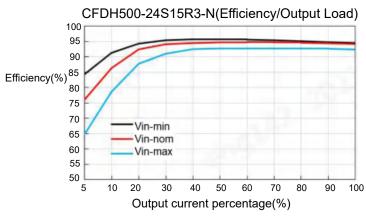
② Number of parallel connections: 4pcs max, with current sharing accuracy limited to 2pcs products for reference when connected in parallel.

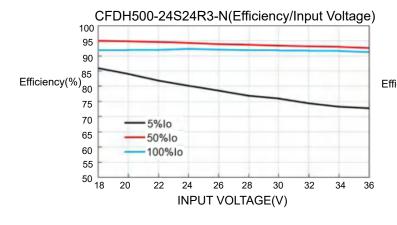
General characteristi	cs				
Project	Working conditions	Min.	Тур.	Max.	Unit
1 1 2 1/16	Input output, test time 1 minute, leakage current less than 1mA	2250			.,
Isolation Voltage	Input/Output - Housing, test time 1 minute, leakage current less than 1mA	2250			VDC
Insulation resistance	Input output, insulation voltage 500Vpc	100			ΜΩ
Isolation capacitor	Input output, 100kHz/0.1V		3000		pF
Operation temperature	Shell temperature Tc	-40		+100	
Storage temperature		-55		+125	\mathbb{C}
Pin resistance to welding temperature	Welding point distance from the shell 1.5mm, 10 seconds			+300	
Storage humidity	No condensation	5		95	%RH
Vibrate		10-15	0Hz,5G,0.75m	nm.along X,Y a	and Z
Switching frequency (PWM mode)	PWM Mode		280		kHz
Mean time between failures	MIL-HDBK-217F@25℃	1000			k hours

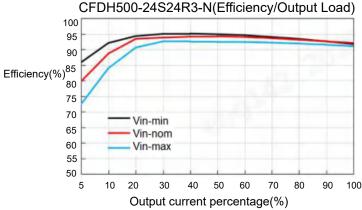
Physical property			
Housing material	Aluminum alloy+black flame retardant and heat-resistant plastic		
Size	61.0×57.9×12.7mm		
Weight	130.0g(Typ.)		
Cooling method	Natural air cooling or forced air cooling		

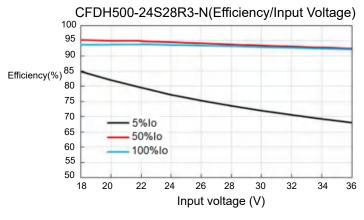

EMC cl	naracteristic	
E N 41	Conducted interference	CISPR32/EN55032 CLASS A(Plus peripheral) (Recommended circuit as shown in Figure 4)
EMI	Radiated Interference	CISPR32/EN55032 CLASSA(Plus peripheral) (Recommended circuit as shown in Figure 4)

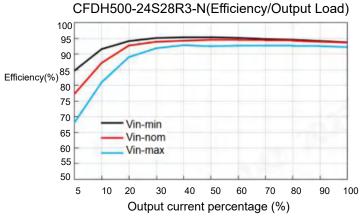


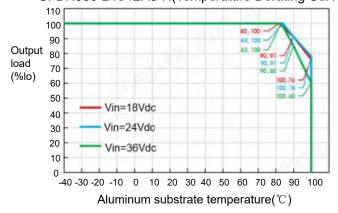

	Electrostatic Discharge	IEC/EN61000-4-2	Contact ±6kV,Air±8kV	perf.Criteria B
	Radiation anti- interference degree	IEC/EN61000-4-3	10V/m(Recommended circuit (see Figure 4)	Perf.Criteria A
EMS	Pulse group anti-interference degree	IEC/EN61000-4-4	±2kV(Recommended circuit (see Figure 4)	Perf.Criteria A
	Surge immunity	IEC/EN61000-4-5	line to line ±2kV(Recommended circuit (see Figure 4)	Perf.Criteria B
	Conducted interference immunity	IEC/EN61000-4-6	10Vr.m.s(Recommended circuit (see Figure 4)	Perf.Criteria A

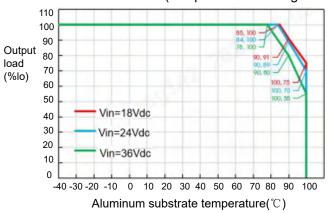

Product characteristic curve

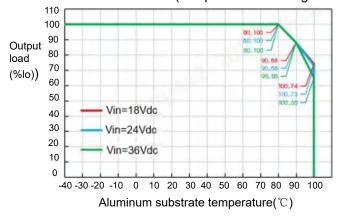


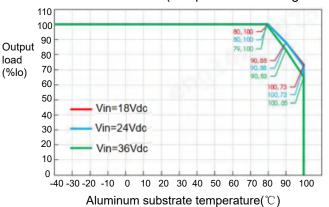




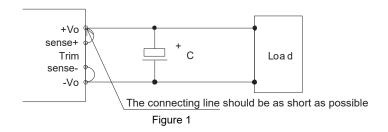




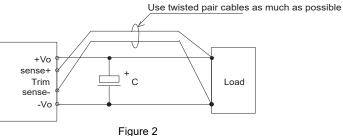

CFDH500-24S12R3-N(Temperature Derating Curve)


CFDH500-24S15R3-N(Temperature Derating Curve)

CFDH500-24S24R3-N(Temperature Derating Curve)



CFDH500-24S28R3-N(Temperature Derating Curve)

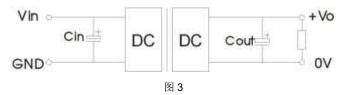

Usage and precautions of Sense

Note:

- 1. When remote compensation is not used, ensure that+Vo and Sense+, Vo and Sense are short circuited;
- 2. The connection between Vo and Sense+, Vo and Sense should be as short as possible and close to the terminal; Avoid forming a larger circuit area, as noise entering this circuit may cause instability of the module.

2. When using remote compensation:

Note:


- 1. If the remote compensation lead is too long, it may cause unstable output voltage. If it is necessary to use a longer remote compensation lead, please contact our technical personnel.
- 2. If using remote compensation, please use twisted pair or shielded wire and make the lead as short as possible.
- Please use wide PCB leads or thick wires between the power module and the load, and keep the line voltage drop below 0.3V; Ensure that the output voltage of the power module remains within the specified range.
- 4. The impedance of the lead wire may cause output voltage oscillation or large ripple. Please make sufficient evaluation before use.

Reference

1.Application circuit

All DC/DC converters in this series are tested according to the recommended testing circuit (Figure 3) before leaving the factory.

If further reduction of input and output ripple is required, the external capacitance Cin and Cout of the input and output can be increased or a capacitor with a small series equivalent impedance value can be selected, but the capacitance value cannot exceed the maximum capacitive load of the product.

Capacitance value Output voltage	Cout(min.)	Cin
12V/15V/24V/28V	470µF/35V	220µF/63V

2. EMC Solutions - Recommended Circuits

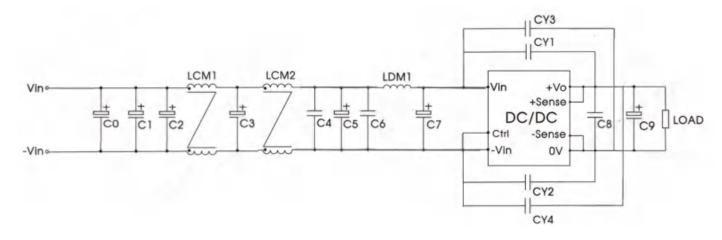


Figure 4

Device	Parameter Description
C0,C1,C2,C3,C5,C7	330µF/63V electrolytic capacitor
C4,C6,C8	2.2μF/100V ceramic capacitor
C9	470μF/63V electrolytic capacitor
LCM1	560uH
LCM2	200uH
LDM1	10uH
CY1,CY2,CY3,CY4	4.7nF/400Vac safety Y-capacitor

3. Use of Trim and Calculation of Trim Resistance

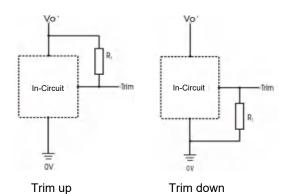


Figure 5: Usage circuit of Trim (dashed boxes represent the interior of the product)

The calculation formula for Trim resistance:

Trimup

$$R_{_T} = \left(\frac{5.11V_{_{norm}}(100 + \Delta\%)}{1.225\Delta\%} - \frac{511}{\Delta\%} - 10.22\right)(k\Omega)$$

Trim down

$$R_T = \left(\frac{511}{\Delta\%}\right) - 10.22(k\Omega)$$

注:

RT is a Trim resistor

$$\Delta\% = \left| \frac{V_{min} - V_{mid}}{V_{min}} \right| \times 100$$

Vnom is a typical output voltage

Vout is used to set the output voltage

4. Reflection ripple current test

The input reflection ripple current should be tested according to the peripheral circuit in the diagram.

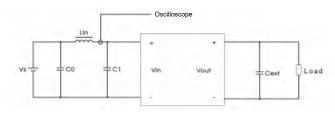


Figure 6

Device	Parameter Description
C0	220µF/63V
Lin	10uH/40A
C1	470µF/63V
Cext	470µF/35V

5. The product supports output parallel power increase

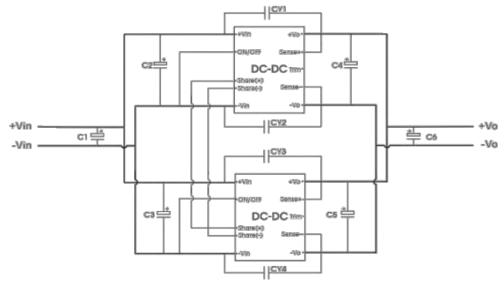


Figure 7 Parallel current sharing wiring diagram

When using the parallel current sharing function, it is necessary to ensure that the wiring length of each power module is equal as much as possible, and the maximum number of parallel connections is 4.

Vin(VDC)	Vo(VDC)	C1/C2/C3	C4/C5/C6	CY1/CY2/CY3/CY4
24	12/15/24/28	220uF/63V	470uF/35V	222M/Y2

6. Recommended hot testing plan

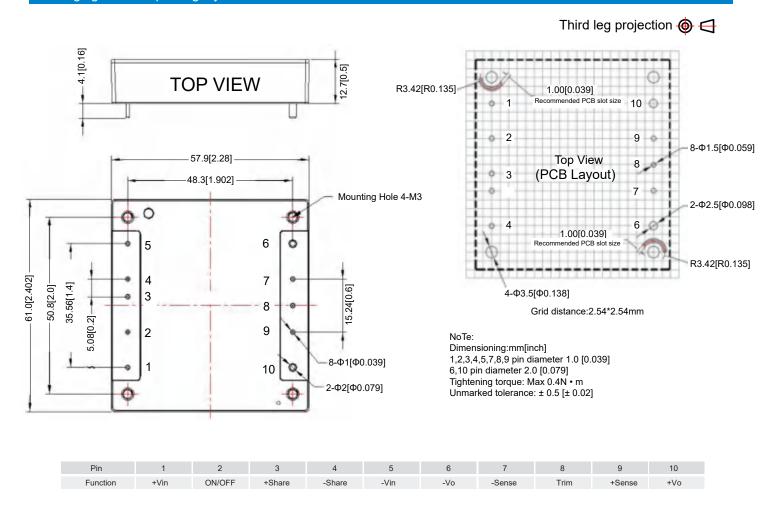

During the application process, the thermal design of the product can be evaluated by combining the temperature reduction curve of the product, or the stable working range of the product can be determined by testing the temperature of the thermal test point in Figure 8; When the temperature at point A is below 100° C, it is the stable working range of the product.

Figure 8 Top view of the product

Packaging size and printing layout:

- 1.The recommended unbalance degree of the dual output module load is ≤±5%; if the degree exceeds ±5%, than the product performance cannot be guaranteed to comply with all parameters in the datasheet. Please contact our technicians directly for specific information:
- 2. The maximum capacitive load offered were tested at nominal input voltage and full load:
- 3. Unless otherwise specified,parameters in this datasheet were measured under the conditions of Ta=25℃,humidity<75% with nominal input voltage and rated output load;

The maximum capacitive load offered were tested at nominal input voltage and full load;

- 4.All index testing methods in this datasheet are based on our Company's corporate standards;
- 5. The performance parameters of the product models listed in this manual are as above, but some parameters of non-standard model products may exceed the requirements mentioned above. Please contact our technicians directly for specific information;
- 6. Specifications are subject to change without prior notice.

Beijing Huayang Changfeng Technology Co.,Ltd.

Address:No.25,torch South Street,Zhuozhou Development Zone,Hebei Province,people's Republic of China Tel:86-10-68817997 Mobile phone:15600309099 E-mail:sales@chewins.net