

FEATURES

- Ultra-wide 4:1 input voltage range
- High effic iency up to 90%
- ◆ I/O isolation test voltage: 2250V_{DC}
- Input under-voltage protection, output
- short-circuit, over-current, over-voltage, over-temperature protection
- Operating ambient temperature range:-40 ℃ to +100 ℃
- Five-sided metal shielded pac kage
- Industry standard ¼-Brick package and pin-out
- EN62368 approved
- Meet UL62368, IEC62368, EN50155 standards
- 3 years warranty

100W isolated DC-DC converter, Ultra-wide input and regulated single output

Selec tion Guide								
		Input Volta	ge(VDC)	Output		Full Load	Capac itive	
Certification	Part Ño	Nominal (Range)	Max. ²	Voltage (VDC)	Current (A) Max.	Effic iency (%) Min./Typ.	Load (µF) Max.	
	CFDQR100-24S05			5	20	87/89	6000	
	CFDQR100-24S12			12	8.3	88/90	2000	
	CFDQR100-24S15	24	40	15	6.7	88/90	2000	
	CFDQR100-24S24	(9-36)	40	24	4.2	88/90	1000	
	CFDQR100-24S28			28	3.6	88/90	1000	
	CFDQR100-24S48			48	2.1	88/90	470	

Note:

②Exceeding the maximum input voltage may cause permanent damage.

Input Spec ifications					
ltem	Operating Conditions	Min.	Тур.	Max.	Unit
Input Current (full load/no-load)	Nominal input voltage		4682/120	4789/160	A
Reflec ted Ripple Current	Nominal input voltage		30		mA
Surge Voltage (1sec.max.)		-0.7		50	
Start-up Voltage				9	VDC
Under-voltage Protec tion		7.0	7.5		
Input Filter			Pi filter		
ONT *	Module on	CNT pin	CNT pin open or pulled high (3.5-12Vpc)		
CNT *	Module off	CNT pi	CNT pin pulled low to -Vin(0-1.2VDC)		

①"S"suffix for heat sink mounting. We recommend to choose modules with a heat sink for enhanced heat dissipation and applications with extreme temperature requirements;

CFDQR100-24 Series

DC/DC CONVERTER

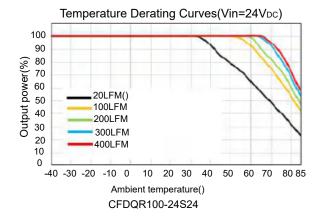
CNT*	Input current when off		2	10	mA
Hot Plug		Unavailable			
Note: *The CNT pin voltage is referenced to input -Vin.					

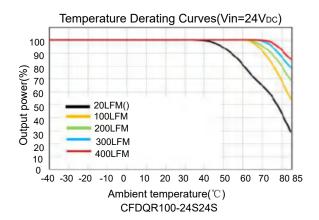
Item	Operating Conditions		Min.	Тур.	Max.	Unit
Voltage Accuracy	0%-100% load			±1	±3	
Linear Regulation	Input voltage variation from	low to high at full load		±0.2	±0.5	%
Load Regulation	5%-100% load			±0.5	±0.75	
Transient Recovery Time	25% load step change			200	500	μs
Transient Response Deviation	25% load step change	5 V output		±3	±7.5	%
		Others		±3	±5	
Temperature Coefficient	Full load				±0.03	%/℃
Discola Maria at		12V/15V output		100	200	
Ripple/Noise*	20MHz bandwidth	Others		130	250	mVp-p
Over-voltage Protection			110	125	160	%Vo
Over-current Protection	Input voltage range		110	125	150	%lo
Short-circuit Protection			Hiccup, continuous, self-recovery			ery

General Specifications						
ltem	Operating Conditions		Min.	Тур.	Max.	Unit
	Input-output	Electric Strength Test for 1	2250			
solation	Input-case	minute with a leakage	1600			VDC
	Output-case	current of 1mA max.	500			
Insulation Resistance	Input-output resistance	e at 500Vpc	100			МΩ
Isolation Capacitance	Input-output capacitar	nce at 100KHz/0.1V		2200		pF
Trim	5V,15V output		91		110	
Trim	Others		90		110	%Vo
Sense	See remote sense ap	See remote sense application			110	
	Natural convection	CFDQR100-24S05			8	
Thermal Resistance		CFDQR100-24S05S			5.7	°C/W
					5.7	
Operating Temperature			-40		+100	
Storage Temperature			-55		+125	
Over-temperature Protection	Max. case temperatur	re		115	120	\sim
	Wave-soldering, 10 se	econds			260	
Pin Soldering Resistance Temperature	Soldering spot is 1.5mm away from case for 10 seconds				300	
Storage Humidity	Non-condensing		5		95	%RH
Vibration			IEC/EI	N61373 - Cate	egory 1, Grad	de B
Switching Frequency	PWM mode			250		KHz
MTBF	MIL-HDBK-217F@25	$^{\circ}$	500			K hours

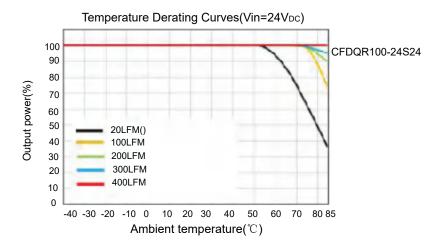
Mechanical S	Mechanical Specifications				
Case Material		Aluminum alloy case; Black plastic bottom, flame-retardant and heat-resistant (UL94V-0)			
Dimensions	CFDQR100-24S05	61.8×40.2×12.7mm			

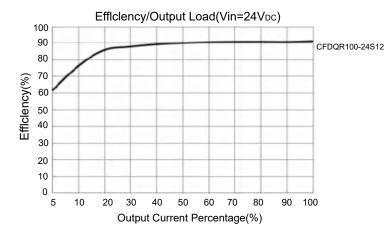
DC/DC CONVERTER

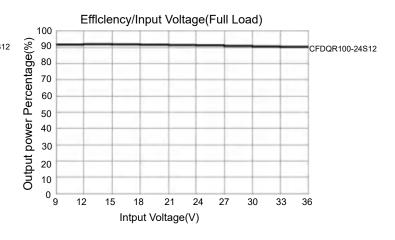


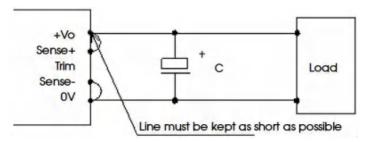

Dimensions	CFDQR100-24S05S	61.8×40.2×27.7mm
	CFDQR100-24S05	86.0g(Typ.)
Weight	CFDQR100-24S05S	117.0g(Typ.)
Cooling Method		Natural air convection or forced convection

Electroma	Electromagnetic Compatibility(EMC)						
Emissions	CE	CISPR32/EN55032	CLASS A and CLASS B (see Fig.3 for recommended circuit)				
Emissions	RE	CISPR32/EN55032 CLASS A and CLASS B (see Fig.3 for recommended circuit)					
	ESD	IEC/EN61000-4-2	C/EN61000-4-2 Contact ±6KV Air ±8KV				
	RS IEC/EN61000-4-3 20V/m		perf.Criteria A				
lmmunity	EFT IEC/EN61000-4-4 ±2KV(see Fig. 2 for recommended circuit)		perf.Criteria A				
cs		IEC/EN61000-4-6	10 Vr.m.s	perf.Criteria A			


Electroma	Electromagnetic Compatibility (EMC) (EN50155)					
CE		EN50121-3-2 EN55016-2-1	150kHz-500kHz 99dBuV (see Fig.3 for recommended circuit) 500kHz-30MHz 93dBuV			
Emissions	RE	EN50121-3-2 EN55016-2-1	30MHz-230MHz 40dBuV/m at 10m (see Fig.3 for recommended circuit) 230MHz-1GHz 47dBuV/m at 10m			
	ESD	EN50121-3-2	Contact ±6KV/Air ±8KV			
	RS	EN50121-3-2	80MHz-800MHz 20V/m(rms)			
Immunity	EFT	EN50121-3-2	±2kV 5/50ns 5kHz (see Fig.2 for recommended circuit)			
Surge		EN50121-3-2	line to line ±1KV (42 Ω 0.5uF see Fig.2 for recommended circuit)			
	CS	EN50121-3-2	0.15MHz-80MHz 10V(rms)			


Typical Characteristic Curves

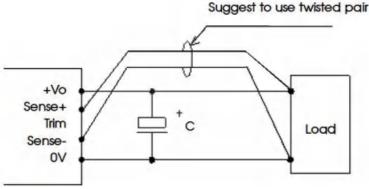




Notes:

1) Product application thermal design should be referred to the recommended PCB layout and recommended heat dissipation structure, please see DC-DC Converter Application Notes for specific operation.

Remote Sense Application


1.Remote Sense Connection if not used

- (1)If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
- (2)The connections between sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

2. Remote Sense Connection used for Compensation

- (1)Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
- (2)PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wairs are suggested for remote compensation and must be kept as short as possible.
- (3)We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
- (4)Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.

Design Reference

1. Typical application

- (1)We recommended using the recommended circuit shown in Fig.1 during product testing and application, otherwise please ensure that at least a 220µF electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.
- (2)We recommended increasing the value of Cin and pay attention to the unstable input voltage if the product input side is paralleled with motor drive circuit and/or larger energy transient circuits, to ensure the stablity of input terminal and avoid repeatedly start-up problems due to input voltage lower than undervoltage protection point.
- (3)We recommended increasing the output capacitance with limited to the capacitive load specification and/or increasing the voltage clamping circuit(such as TVS) if the output terminal is inductive device such as relay or a motor, to ensure adequate voltage surge suppression and protection.
- (4)Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

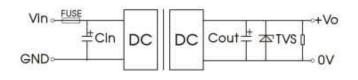
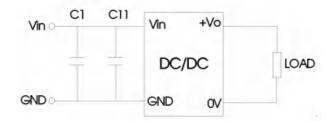


Fig.1

Vout(VDC)	Fuse	Cin	Cout	TVS
5			470µF	SMDJ7.0A
12			220	SMDJ15A
15	20A,	220	220µF	SMDJ18A
24	slow blow	220µF		SMDJ30A
28			100µF	SMDJ36A
48				SMDJ64A


Note:

^{*}Please pay attention to the ambient temperature of the product when using an external capacitor, increase the electrolytic capacitor values to at least 1.5 times the original parameter if the ambient temperature is low(such as -25°C).

2. EMC compliance circuit

We recommended using the recommended circuit shown in Fig.2 during product EMC testing and application.

Capacitor	Recommended value	Function
C1	150µF electrolytic capacitor	Meets EFT and
C11	47µF electrolytic capacitor	surge

Fig.2

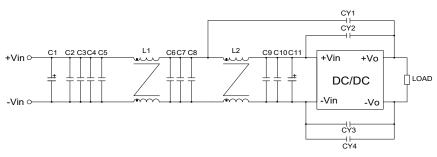
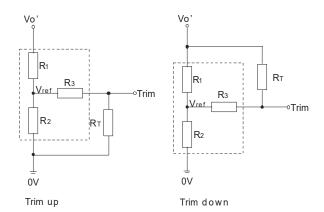



Fig.3

CLASS A components	conents CLASS B components Recommended component value		Function		
C1		C1		150µF electrolytic capacitor	
C11		47µF electrolytic capacitor			
C2, C3, C4, C5, C6, C7, C8, C9, C10		10μF ceramic capacitor	Meets conducted		
Ľ	1, L2	1.6mH common mode inductor	emission and radiated emission		
0.10	CY1, CY2	2.2nF Y1safety capacitor			
CY3	CY3, CY4	1nF Y1safety capacitor			

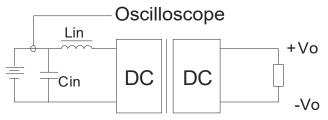
3. Trim Function for Output Voltage Adjustment (open if unused)

TRIM resistor connection (dashed line shows internal resistor network)

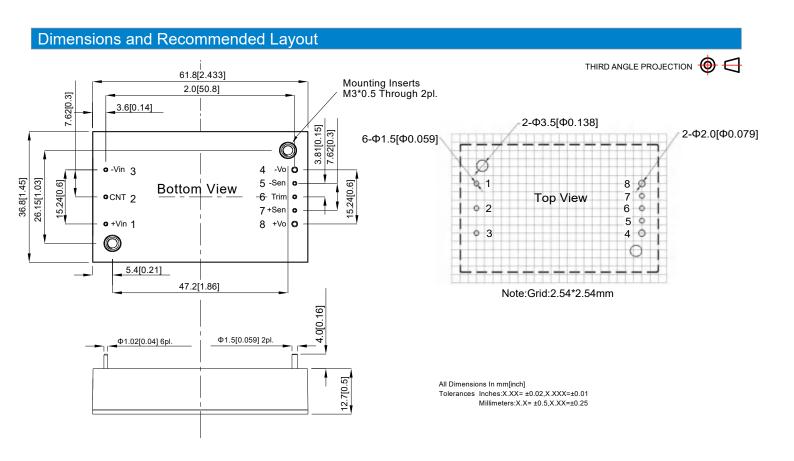
Calculation formula of Trim resistance:

up:RT=
$$\frac{aR_2}{R_2-a}$$
-R3 $a = \frac{Vref}{Vo'-Vref} \cdot R'$

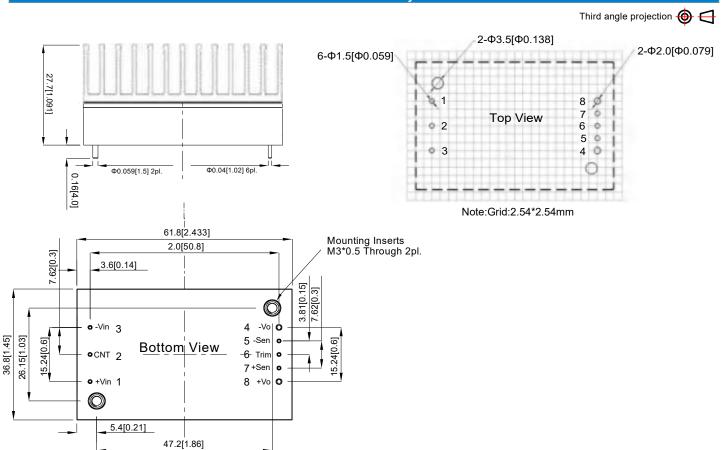
down:RT=
$$\frac{aR_1}{R_1-a}$$
 -R3 $a = \frac{Vo'-Vref}{Vref} \cdot R$


RT=Trim Resistor value; a=self-defined parameter Vo'=desired output voltage (±10% max.)

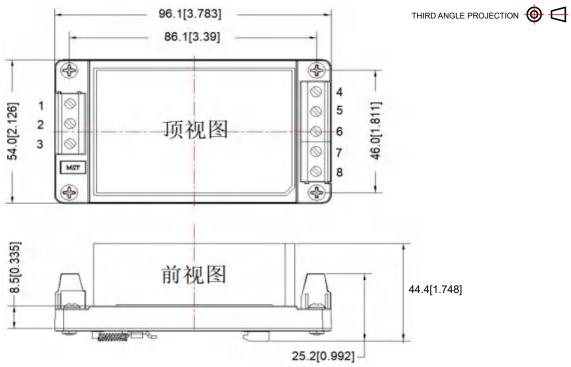
Vout(VDC)	R1(KΩ)	R2(KΩ)	R3(KΩ)	Vref(V)
5	3.036	3	10	2.5
12	11.00	2.87	15	2.5
15	14.03	2.8	15	2.5
24	24.872	2.87	15	2.5
28	29.201	2.851	15	2.5
48	53.017	2.894	15	2.5


Note: If the Trim pin is shorted with "+Vo", or its value is too low, then the output voltage Vo' would be lower than 0.90Vo, which may cause permanent damage.

4. Reflected ripple current--test circuit


Note:Lin(4.7 μ H),Cin(220 μ F,ESR<1.0 Ω at 100KHz)

5. The products do not support parallel connection of their output.



CFDQR75-48S05S Dimensions and Recommended Layout

Z Dimensions

Note:
Unit:mm[inch]
Wire range:24-12 AWG
Tinghtening torgue:Max 0.4 N•m
Mounting rail:TS35,rail needs to connect safety ground
General tolerances:±0.5[±0.02]

Note:

- 1: The maximum capac itive load offered were tested at input voltage range and full load;
- 2: Unless otherwise spec ified, data in this datasheet should be tested under the conditionsof Ta=25°C, humidity<75%RH with nominal input voltage and rated load;
- 3: All index testing methods in thisdatasheet are based on our company corporate standards;
- 4: We can provide product customization service, please contact our technic ians directly for specific information;
- 5: Produc tsare related to laws and regulations: see "Features" and "EMC";
- 6: Our products shall be classified according to ISO14001 and related environmental lawsand regulations, and shall be handled by qualifiedunits.

Beijing Huayang Changfeng Technology Co., Ltd.

Address: No. 25, torch South Street, Zhuozhou Development Zone, Hebei Province, people's Republic of China Tel:86-10-68817997 Mobile phone:15600309099 E-mail:sales@chewins.net